The nuclease hSNM1B/Apollo is linked to the Fanconi anemia pathway via its interaction with FANCP/SLX4.
نویسندگان
چکیده
The recessive genetic disorder Fanconi anemia (FA) is clinically characterized by congenital defects, bone marrow failure and an increased incidence of cancer. Cells derived from FA patients exhibit hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. We have earlier reported a similar cellular phenotype for human cells depleted of hSNM1B/Apollo (siRNA). In fact, hSNM1B/Apollo has a dual role in the DNA damage response and in generation and maintenance of telomeres, the latter function involving interaction with the shelterin protein TRF2. Here we find that ectopically expressed hSNM1B/Apollo co-immunoprecipitates with SLX4, a protein recently identified as a new FA protein, FANCP, and known to interact with several structure-specific nucleases. As shown by immunofluorescence analysis, FANCP/SLX4 depletion (siRNA) resulted in a significant reduction of hSNM1B/Apollo nuclear foci, supporting the functional relevance of this new protein interaction. Interestingly, as an additional consequence of FANCP/SLX4 depletion, we found a reduction of cellular TRF2, in line with its telomere-related function. Finally, analysis of human cells following double knockdown of hSNM1B/Apollo and FANCP/SLX4 indicated that they function epistatically. These findings further substantiate the role of hSNM1B/Apollo in a downstream step of the FA pathway during the repair of DNA ICLs.
منابع مشابه
Cancel all Hollidays for SLX4 mutations: identification of a new Fanconi anemia subtype, FANCP.
SLX4, a coordinator of structure-specific endo-nucleases, is mutated in a new Fanconi anemia subtype Stoepker et al. (2011) Nature Genetics 43:138-141. Mutations of the SLX4 gene in Fanconi anemia Kim et al. (2011) Nature Genetics 43:142-146.
متن کاملNuclease Delivery: Versatile Functions of SLX4/FANCP in Genome Maintenance
As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of caus...
متن کاملSNM1B/Apollo in the DNA damage response and telomere maintenance
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize...
متن کاملWhole exome sequencing reveals uncommon mutations in the recently identified Fanconi anemia gene SLX4/FANCP.
Fanconi anemia (FA) is a rare genetic disorder characterized by congenital malformations, progressive bone marrow failure (BMF), and susceptibility to malignancies. FA is caused by biallelic or hemizygous mutations in one of 15 known FA genes, whose products are involved in the FA/BRCA DNA damage response pathway. Here, we report on a patient with previously unknown mutations of the most recent...
متن کاملMouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair
SLX4 binds to three nucleases (XPF-ERCC1, MUS81-EME1, and SLX1), and its deficiency leads to genomic instability, sensitivity to DNA crosslinking agents, and Fanconi anemia. However, it is not understood how SLX4 and its associated nucleases act in DNA crosslink repair. Here, we uncover consequences of mouse Slx4 deficiency and reveal its function in DNA crosslink repair. Slx4-deficient mice de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 22 شماره
صفحات -
تاریخ انتشار 2012